Abstract
Graphene (0.5 wt.%) was dispersed in the hydrophobic room-temperature ionic liquid 1-octyl-3-methylimidazolium bis(trifluoromethanesulfonyl) imide (IL) to obtain a new non-Newtonian (IL + G) nanolubricant. Thin layers of IL and (IL + G) lubricants were deposited on stainless steel disks by spin coating. The tribological performance of the new thin layers was compared with those of full fluid lubricants. Friction coefficients for neat IL were independent of lubricant film thickness. In contrast, for (IL + G) the reduction of film thickness not only afforded 40% reduction of the friction coefficient, but also prevented wear and surface damage. Results of surface profilometry, scanning and transmission electron microscopy (SEM and TEM), energy dispersive analysis (EDX), X-ray photoelectron spectroscopy (XPS) and Raman spectroscopy were discussed.
Subject
General Materials Science,General Chemical Engineering
Cited by
14 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献