Abstract
In relevant investigations and applications of the heated atomic force microscope (AFM) probes, the determination of the actual thermal distribution between the probe and the materials under processing or testing is a core issue. Herein, the polyphthalaldehyde (PPA) film material and AFM imaging of the decomposition structures (pyrolytic region of PPA) were utilized to study the temperature distribution in the nano/microscale air gap between heated tips and materials. Different sizes of pyramid decomposition structures were formed on the surface of PPA film by the heated tip, which was hovering at the initial tip–sample contact with the preset temperature from 190 to 220 °C for a heating duration ranging from 0.3 to 120 s. According to the positions of the 188 °C isothermal surface in the steady-state probe temperature fields, precise 3D boundary conditions were obtained. We also established a simplified calculation model of the 3D steady-state thermal field based on the experimental results, and calculated the temperature distribution of the air gap under any preset tip temperature, which revealed the principle of horizontal (<700 nm) and vertical (<250 nm) heat transport. Based on our calculation, we fabricated the programmable nano-microscale pyramid structures on the PPA film, which may be a potential application in scanning thermal microscopy.
Funder
National Natural Science Foundation of China
Fundamental Research Funds for the Central Universities
China Postdoctoral Science Foundation
Subject
General Materials Science,General Chemical Engineering
Cited by
2 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献