Prediction of Individual Tree Diameter Using a Nonlinear Mixed-Effects Modeling Approach and Airborne LiDAR Data

Author:

Fu Liyong,Duan Guangshuang,Ye Qiaolin,Meng Xiang,Luo Peng,Sharma Ram P.ORCID,Sun Hua,Wang GuangxingORCID,Liu Qingwang

Abstract

Rapidly advancing airborne laser scanning technology has become greatly useful to estimate tree- and stand-level variables at a large scale using high spatial resolution data. Compared with that of ground measurements, the accuracy of the inferred information of diameter at breast height (DBH) from a remotely sensed database and the models developed with traditional regression approaches (e.g., ordinary least square regression) may not be sufficient. Thus, this regression approach is no longer appropriate to develop accurate models and predict DBH from remotely sensed-related variables because DBH is subject to the random effects of forest stands. This study developed a generalized nonlinear mixed-effects DBH estimation model from remotely sensed imagery data. The light detection and ranging (LiDAR)-derived stand canopy density, crown projection area, and tree height were used as predictors in the DBH estimation model. These variables can be more readily measured over an extensive forest area with higher accuracy compared to the conventional field-based methods. The airborne LiDAR data for a total of 402 Picea crassifolia Kom trees on a sample plot that were divided into 16 sub-sample plots and located in the most important distribution region of western China were used. The leave-one sub-sample plot-out cross-validation method was applied to evaluate the model’s prediction accuracy. The results indicated that the random effects of the sub-sample plot on the prediction of DBH were large and their inclusion into the DBH model significantly improved the prediction accuracy. The prediction accuracy of the proposed model at the mean (M) response was also substantially improved relative to the accuracy obtained from the base model. Among several tree selection alternatives evaluated, a sample size of the two largest trees per sub-sample plot used in estimating the random effects showed a significantly higher accuracy compared to other sampling alternatives. This sample size would balance both the measurement cost and potential prediction errors. The nonlinear mixed-effects DBH estimation model at the M response can also be applied if obtaining the estimates of individual tree DBH with a relatively lower cost, and a lower prediction accuracy was the purpose of the study.

Publisher

MDPI AG

Subject

General Earth and Planetary Sciences

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3