On-Orbit Calibration of Installation Parameter of Multiple Star Sensors System for Optical Remote Sensing Satellite with Ground Control Points

Author:

Wang Yanli,Wang Mi,Zhu YingORCID

Abstract

Owing to the vibrations and thermal shocks that arise during the launch and orbit penetration process, the on-orbit installation parameters of multiple star sensors are different from the on-ground measured parameters, causing inconsistencies in the attitude determinations from different combination modes and seriously affecting the geometric accuracy of high-resolution optical remote sensing images. This study presents an on-orbit calibration approach for the installation parameters of a multiple star sensors system using ground control points (GCPs). Based on the on-ground installation parameters of the optical axes of conventional star sensors, a fiducial coordinate system is proposed as the calibration coordinate system. The installation parameters of the conventional star sensors are calibrated using the statistical characteristics of angles between axes of the star sensor and three fiducial vectors in the J2000 celestial coordinate system. Based on the GCPs, the relative fiducial parameters are calculated, and the installation parameter of unconventional star sensor is then calibrated with the relative fiducial parameters and statistical characteristics of angles. It can be used for high-resolution optical remote sensing satellite measuring with only two star sensors to unify the fiducial coordinate system. The proposed method is tested using simulated data and on-orbit measurement data. The results demonstrate that the proposed method can calibrate the optical axis of the star sensor without the restriction of the accuracy of horizontal axis. Moreover, the star sensor with a large installation angle error can be calibrated well using the proposed approach. The results of attitude determinations from different star sensor combination modes are consistent, and the geometric accuracy of the remote sensing images is significantly improved.

Funder

the National Key Research and Development Program of China

Publisher

MDPI AG

Subject

General Earth and Planetary Sciences

Cited by 7 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3