Downscaling Aster Land Surface Temperature over Urban Areas with Machine Learning-Based Area-To-Point Regression Kriging

Author:

Xu JianhuiORCID,Zhang Feifei,Jiang HaoORCID,Hu Hongda,Zhong Kaiwen,Jing WenlongORCID,Yang Ji,Jia BinghaoORCID

Abstract

Land surface temperature (LST) is a vital physical parameter of earth surface system. Estimating high-resolution LST precisely is essential to understand heat change processes in urban environments. Existing LST products with coarse spatial resolution retrieved from satellite-based thermal infrared imagery have limited use in the detailed study of surface energy balance, evapotranspiration, and climatic change at the urban spatial scale. Downscaling LST is a practicable approach to obtain high accuracy and high-resolution LST. In this study, a machine learning-based geostatistical downscaling method (RFATPK) is proposed for downscaling LST which integrates the advantages of random forests and area-to-point Kriging methods. The RFATPK was performed to downscale the 90 m Advanced Spaceborne Thermal Emission and Reflection Radiometer (ASTER) LST 10 m over two representative areas in Guangzhou, China. The 10 m multi-type independent variables derived from the Sentinel-2A imagery on 1 November 2017, were incorporated into the RFATPK, which considered the nonlinear relationship between LST and independent variables and the scale effect of the regression residual LST. The downscaled results were further compared with the results obtained from the normalized difference vegetation index (NDVI) based thermal sharpening method (TsHARP). The experimental results showed that the RFATPK produced 10 m LST with higher accuracy than the TsHARP; the TsHARP showed poor performance when downscaling LST in the built-up and water regions because NDVI is a poor indicator for impervious surfaces and water bodies; the RFATPK captured LST difference over different land coverage patterns and produced the spatial details of downscaled LST on heterogeneous regions. More accurate LST data has wide applications in meteorological, hydrological, and ecological research and urban heat island monitoring.

Funder

National Natural Science Foundation of China

Guangdong Innovative and Entrepreneurial Research Team Program

Publisher

MDPI AG

Subject

General Earth and Planetary Sciences

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3