Multi-Objective Routing Optimization in Electric and Flying Vehicles: A Genetic Algorithm Perspective

Author:

Alolaiwy Muhammad1ORCID,Hawsawi Tarik1ORCID,Zohdy Mohamed1ORCID,Kaur Amanpreet1ORCID,Louis Steven1ORCID

Affiliation:

1. Electrical and Computer Engineering Department, Oakland University, Rochester, MI 48309, USA

Abstract

The advent of electric and flying vehicles (EnFVs) has brought significant advancements to the transportation industry, offering improved sustainability, reduced congestion, and enhanced mobility. However, the efficient routing of messages in EnFVs presents unique challenges that demand specialized algorithms to address their specific constraints and objectives. This study analyzes several case studies that investigate the effectiveness of genetic algorithms (GAs) in optimizing routing for EnFVs. The major contributions of this research lie in demonstrating the capability of GAs to handle complex optimization problems with multiple objectives, enabling the simultaneous consideration of factors like energy efficiency, travel time, and vehicle utilization. Moreover, GAs offer a flexible and adaptive approach to finding near-optimal solutions in dynamic transportation systems, making them suitable for real-world EnFV networks. While GAs show promise, there are also limitations, such as computational complexity, difficulty in capturing real-world constraints, and potential sub-optimal solutions. Addressing these challenges, the study highlights several future research directions, including the integration of real-time data and dynamic routing updates, hybrid approaches with other optimization techniques, consideration of uncertainty and risk management, scalability for large-scale routing problems, and enhancing energy efficiency and sustainability in routing. By exploring these avenues, researchers can further improve the efficiency and effectiveness of routing algorithms for EnFVs, paving the way for their seamless integration into modern transportation systems.

Publisher

MDPI AG

Subject

Fluid Flow and Transfer Processes,Computer Science Applications,Process Chemistry and Technology,General Engineering,Instrumentation,General Materials Science

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3