Experimental Study on the Condensation Heat Transfer on a Wettability-Interval Grooved Surface

Author:

Ren Shaojun1,Gao Shangwen1,Xu Ze1,Wu Suchen1,Deng Zilong1

Affiliation:

1. Key Laboratory of Energy Thermal Conversion and Control of Ministry of Education, School of Energy and Environment, Southeast University, Nanjing 210096, China

Abstract

To provide further insight into humid air condensation on hybrid surfaces, an experiment was conducted to visually investigate the condensation process on wettability-interval grooved surfaces, which had hydrophobic ridges and hydrophilic grooves. The droplet dynamic behavior and heat transfer performance of condensation on a wettability-interval grooved surface were explored and compared with four other functional surfaces, including the plain hydrophilic surface, plain hydrophobic surface, hydrophilic grooved surface, and hydrophobic grooved surface. The presence of hydrophobic ridges perpendicular to the groove direction and hydrophilic grooves allowed for the exclusion and easy spreading of droplets, respectively. Compared with the other four functional surfaces, the coupling phenomena during condensation, i.e., the spontaneous suction and directional drainage via hydrophilic grooves, were only found on the wettability-interval grooved surface. These could not only remove condensate quickly but also suppress the formation of the flooded liquid film, which was beneficial to the enhancement of heat transfer performance. It was proven by the experimental results that at subcooling 12 K, the condensation heat flux on the wettability-interval grooved surface reached 1280 W/m2, which was 1.25 times that of the plain hydrophobic surface (1030 W/m2), and 15% higher than that of the hydrophobic grooved surface (1110 W/m2). This indicated that the wettability-interval microgrooves could effectively enhance humid air condensation heat transfer performance.

Funder

National Natural Science Foundation of China

Natural Science Foundation of Jiangsu Province

Publisher

MDPI AG

Subject

Fluid Flow and Transfer Processes,Computer Science Applications,Process Chemistry and Technology,General Engineering,Instrumentation,General Materials Science

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3