Enhancing Water Condensation on Hybrid Surfaces by Optimizing Wettability Contrast

Author:

Chi Do-Thuy1,Nguyen Thanh-Binh1

Affiliation:

1. Faculty of Physics, Thai Nguyen University of Education, Thai Nguyen 840000, Vietnam

Abstract

This study uses a hybrid concept to propose an optimal textured surface morphology for enhancing water condensation. The natural phenomenon-inspired morphology, which combined different degrees of wettability presented on the surface, documented their advantage in water harvesting compared to untreated surfaces. These superiorities might be explained by the appropriate combination of nucleation and water-driven ability facilitated by the superhydrophobic surrounding area. The uniform condensed droplets are effectively agglomerated to achieve the critical size. The best combination was found on a superhydrophobic-hydrophilic hybrid sample that improved water collection efficiency by up to 50% compared to bare Al. Condensation performance also illustrated an interesting tendency that revealed the great contribution of wettability on hydrophilic dots and the water-driven ability of the high-hydrophobicity area. The results were supported by a theoretical model which predicts the critical volume of a single droplet before it has departed from the surface. The findings reveal a good level of agreement between theory and real-time measurement, demonstrating the potential of combinations of hybrid samples to induce water collection efficiency.

Publisher

MDPI AG

Reference35 articles.

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3