Path Planning for Autonomous Vehicles in Unknown Dynamic Environment Based on Deep Reinforcement Learning

Author:

Hu Hui1,Wang Yuge1,Tong Wenjie1,Zhao Jiao1,Gu Yulei2

Affiliation:

1. College of Transportation Engineering, Chang’an University, Xi’an 710064, China

2. College of Automobile, Chang’an University, Xi’an 710064, China

Abstract

Autonomous vehicles can reduce labor power during cargo transportation, and then improve transportation efficiency, for example, the automated guided vehicle (AGV) in the warehouse can improve the operation efficiency. To overcome the limitations of traditional path planning algorithms in unknown environments, such as reliance on high-precision maps, lack of generalization ability, and obstacle avoidance capability, this study focuses on investigating the Deep Q-Network and its derivative algorithm to enhance network and algorithm structures. A new algorithm named APF-D3QNPER is proposed, which combines the action output method of artificial potential field (APF) with the Dueling Double Deep Q Network algorithm, and experience sample rewards are considered in the experience playback portion of the traditional Deep Reinforcement Learning (DRL) algorithm, which enhances the convergence ability of the traditional DRL algorithm. A long short-term memory (LSTM) network is added to the state feature extraction network part to improve its adaptability in unknown environments and enhance its spatiotemporal sensitivity to the environment. The APF-D3QNPER algorithm is compared with mainstream deep reinforcement learning algorithms and traditional path planning algorithms using a robot operating system and the Gazebo simulation platform by conducting experiments. The results demonstrate that the APF-D3QNPER algorithm exhibits excellent generalization abilities in the simulation environment, and the convergence speed, the loss value, the path planning time, and the path planning length of the APF-D3QNPER algorithm are all less than for other algorithms in diverse scenarios.

Funder

National Key Research and Development Program of China

National Natural Science Foundation of China

Publisher

MDPI AG

Subject

Fluid Flow and Transfer Processes,Computer Science Applications,Process Chemistry and Technology,General Engineering,Instrumentation,General Materials Science

Reference34 articles.

1. A Summary of the current situation of driverless vehicles in the world;Ma;Comput. Knowl. Technol.,2019

2. Analysis of the development and problems of driverless vehicles;Wang;Automob. Parts,2020

3. Minimum time planning model of robot path for avoiding obstacles in the static field;Jin;Mach. Tool Hydraul.,2018

4. Qi, Z. (2017). Study on Lane-Changing and Overtaking Control Method of Autonomous Vehicle, D. Yanshan University.

5. A review of the motion planning problem of autonomous vehicle;Yu;J. Tongji Univ. (Nat. Sci.),2017

Cited by 7 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3