RL-Based Sim2Real Enhancements for Autonomous Beach-Cleaning Agents

Author:

Quiroga Francisco1ORCID,Hermosilla Gabriel1ORCID,Varas German2ORCID,Alonso Francisco1ORCID,Schröder Karla1ORCID

Affiliation:

1. Escuela de Ingeniería Eléctrica, Pontificia Universidad Católica de Valparaíso (PUCV), Valparaíso 2340025, Chile

2. Instituto de Física, Pontificia Universidad Católica de Valparaíso (PUCV), Valparaíso 2340025, Chile

Abstract

This paper explores the application of Deep Reinforcement Learning (DRL) and Sim2Real strategies to enhance the autonomy of beach-cleaning robots. Experiments demonstrate that DRL agents, initially refined in simulations, effectively transfer their navigation skills to real-world scenarios, achieving precise and efficient operation in complex natural environments. This method provides a scalable and effective solution for beach conservation, establishing a significant precedent for the use of autonomous robots in environmental management. The key advancements include the ability of robots to adhere to predefined routes and dynamically avoid obstacles. Additionally, a newly developed platform validates the Sim2Real strategy, proving its capability to bridge the gap between simulated training and practical application, thus offering a robust methodology for addressing real-life environmental challenges.

Funder

FONDEF

FONDECYT

Publisher

MDPI AG

Reference48 articles.

1. To clean or not to clean? A critical review of beach cleaning methods and impacts;Zielinski;Mar. Pollut. Bull.,2019

2. Beach cleaning robots a comprehensive survey of technologies challenges, and future directions;Deshpande;Int. Res. J. Mod. Eng. Technol. Sci.,2023

3. Who cares about dirty beaches? Evaluating environmental awareness and action on coastal litter in Chile;Kiessling;Ocean. Coast. Manag.,2017

4. Sutton, R.S., and Barto, A.G. (2018). Reinforcement Learning: An Introduction, MIT Press.

5. Mnih, V., Kavukcuoglu, K., Silver, D., Graves, A., Antonoglou, I., Wierstra, D., and Riedmiller, M. (2013). Playing Atari with Deep Reinforcement Learning. arXiv.

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3