An Improved Visual SLAM Method with Adaptive Feature Extraction

Author:

Guo Xinxin1,Lyu Mengyan1,Xia Bin1ORCID,Zhang Kunpeng1,Zhang Liye1ORCID

Affiliation:

1. College of Computer Science and Technology, Shandong University of Technology, Zibo 255000, China

Abstract

The feature point method is the mainstream method to accomplish inter-frame estimation in visual Simultaneous Localization and Mapping (SLAM) methods, among which the Oriented FAST and Rotated BRIEF (ORB) feature-based method provides an equilibrium of accuracy as well as efficiency. However, the ORB algorithm is prone to clustering phenomena, and its unequal distribution of extracted feature points is not conducive to the subsequent camera tracking. To solve the above problems, this paper suggests an adaptive feature extraction algorithm that first constructs multiple-scale images using an adaptive Gaussian pyramid algorithm, calculates adaptive thresholds, and uses an adaptive meshing method for regional feature point detection to adapt to different scenes. The method uses Adaptive and Generic Accelerated Segment Test (AGAST) to speed up feature detection and the non-maximum suppression method to filter feature points. The feature points are then divided equally by a quadtree technique, and the orientation of those points is determined by an intensity centroid approach. Experiments were conducted on publicly available datasets, and the outcomes demonstrate the algorithm has good adaptivity and solves the problem of a large number of corner point clusters that may result from using manually set detection thresholds. The RMSE of the absolute trajectory error of SLAM applying this method on four sequences of TUM RGB-D datasets is decreased by 13.88% when compared with ORB-SLAM3. It is demonstrated that the algorithm provides high-quality feature points for subsequent image alignment, and the application to SLAM improves the reliability and accuracy of SLAM.

Funder

National Natural Science Foundation of China

Publisher

MDPI AG

Subject

Fluid Flow and Transfer Processes,Computer Science Applications,Process Chemistry and Technology,General Engineering,Instrumentation,General Materials Science

Reference31 articles.

1. MonoSLAM: Real-Time Single Camera SLAM;Davison;IEEE Trans. Pattern Anal. Mach. Intell.,2007

2. A Deep Learning-Based Target Recognition Method for Entangled Optical Quantum Imaging System;Wang;IEEE Trans. Instrum. Meas.,2023

3. Dynamic Convolution for 3D Point Cloud Instance Segmentation;He;IEEE Trans. Pattern Anal. Mach. Intell.,2023

4. A Survey of Visual SLAM Based on Deep Learning;Zhao;Robot,2017

5. Precise self-localization of a walking robot on rough terrain using parallel tracking and mapping;Belter;Ind. Robot,2013

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3