Adaptive Impedance Control for Force Tracking in Manipulators Based on Fractional-Order PID

Author:

Gu Longhao1ORCID,Huang Qingjiu2

Affiliation:

1. School of Information and Electronic Engineering, Zhejiang Gongshang University, Hangzhou 310018, China

2. Control System Laboratory, Graduate School of Engineering, Kogakuin University, Tokyo 163-8677, Japan

Abstract

Force tracking control in robot arms has been widely used in many industrial applications, particularly in tasks involving end effectors and environmental contact, such as grinding, polishing, and other similar operations. However, these environments are not always precisely known. In order to address the force tracking control problem in unknown environments, this paper proposes a fractional-order PID adaptive impedance control strategy based on traditional impedance control. The unknown environmental information is estimated online using the adaptive impedance control algorithm, and the estimated parameters are used to generate reference trajectories to reduce force tracking errors. Fractional-order PID control is then introduced into the system to improve the control performance of the system model, and the theoretical proof of strategy stability is conducted. Finally, a comparison of four strategies was conducted through simulations: traditional impedance control, adaptive hybrid impedance control, adaptive variable impedance control, and the fractional-order PID impedance control proposed in this paper. The simulation results demonstrate that the strategy proposed in this paper exhibits robustness, virtually eliminates overshoot, and enhances response speed. In contrast, both adaptive hybrid impedance control and adaptive variable impedance control exhibit approximately 30% to 45% overshoot during interactions with the environment. Furthermore, in terms of force tracking error, the proposed strategy in this paper outperforms the above two strategies by approximately 29% to 60%, achieving excellent force tracking control performance.

Publisher

MDPI AG

Subject

Fluid Flow and Transfer Processes,Computer Science Applications,Process Chemistry and Technology,General Engineering,Instrumentation,General Materials Science

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3