Design and Analysis of a Robotic Gripper Mechanism for Fruit Picking

Author:

Xu Yongpeng1,Lv Mingming1ORCID,Xu Qian1,Xu Ruting2

Affiliation:

1. School of Mechanical Engineering, Jiangsu University of Science and Technology, Zhenjiang 212100, China

2. School of Information Engineering, Jiangxi University of Science and Technology, Ganzhou 341000, China

Abstract

A gripper is the critical component of the robot end effector for the automatic harvesting of fruit, which determines whether the fruit can be harvested intact or undamaged. In this paper, a robotic gripper mechanism based on three-finger and variable-angle design is designed and analyzed for spherical or cylindrical fruit picking. Among the three fingers of the mechanical gripper, two fingers are rotatable through a pair of synchronous gears to ensure enough contact area for the grasping surfaces, which adapt to fruits of different sizes, such as cherry, loquat, zucchini, and so on. Furthermore, the mathematical relationship between gripper driving force and finger gripping force is obtained by the kinematic analysis of the gripper to realize stable grasping, and a grasping index is employed for the structural parameter optimization of our gripper. The grasping motion is analyzed, and the kinematic simulations are carried out, when the driving speeds of the gripper are 5 mm/s, 10 mm/s, and 15 mm/s, respectively. The system transfer function related to driving speed is obtained by curve fitting. Then, the grasping experiments are conducted with various spherical and cylindrical fruit, of which the weights are between 8 and 300 g and the diameters are from 9 to 122 mm. The experimental results demonstrate that our gripper has good kinematic performance and fruit adaptability. At the same time, the grasping is stable and reliable while no obvious damage appears on the fruit surface.

Funder

Jiangsu Province key research and development project

Publisher

MDPI AG

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3