Abstract
A simple and inexpensive thermal oxidation process was performed to synthesize gallium oxide (Ga2O3) nanowires using Ag thin film as a catalyst at 800 °C and 1000 °C to understand the effect of the silver catalyst on the nanowire growth. The effect of doping and orientation of the substrates on the growth of Ga2O3 nanowires on single-crystal gallium arsenide (GaAs) wafers in atmosphere were investigated. A comprehensive study of the oxide film and nanowire growth was performed using various characterization techniques including XRD, SEM, EDS, focused ion beam (FIB), XPS and STEM. Based on the characterization results, we believe that Ag thin film produces Ag nanoparticles at high temperatures and enhances the reaction between oxygen and gallium, contributing to denser and longer Ga2O3 nanowires compared to those grown without silver catalyst. This process can be optimized for large-scale production of high-quality, dense, and long nanowires.
Subject
General Materials Science
Cited by
7 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献