Spot Welding Parameter Tuning for Weld Defect Prevention in Automotive Production Lines: An ML-Based Approach

Author:

Bayır MusaORCID,Yücel Ertuğrul,Kaya Tolga,Yıldırım Nihan

Abstract

Spot welding is a critical joining process which presents specific challenges in early defect detection, has high rework costs, and consumes excessive amounts of materials, hindering effective, sustainable production. Especially in automotive manufacturing, the welding source’s quality needs to be controlled to increase the efficiency and sustainable performance of the production lines. Using data analytics, manufacturing companies can control and predict the welding parameters causing problems related to resource quality and process performance. In this study, we aimed to define the root cause of welding defects and solve the welding input value range problem using machine learning algorithms. In an automotive production line application, we analyzed real-time IoT data and created variables regarding the best working range of welding input parameters required in the inference analysis for expulsion reduction. The results will help to provide guidelines and parameter selection approaches to model ML-based solutions for the optimization problems associated with welding.

Publisher

MDPI AG

Subject

Information Systems

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3