Protecting Instant Messaging Notifications against Physical Attacks: A Novel Instant Messaging Notification Protocol Based on Signal Protocol

Author:

Almari Raghad1,Almosallam Abdullah2,Almousa Saleh2,Alahmadi Saad1ORCID

Affiliation:

1. Computer Science Department, King Saud University, Riyadh 11451, Saudi Arabia

2. Center of Excellence in Information Assurance, Riyadh 11451, Saudi Arabia

Abstract

Over the years, there has been a significant surge in the popularity of instant messaging applications (IMAs). However, the message notification functionality in IMAs exhibits certain limitations. Some IMAs fail to alert users about new messages after their phone restarts unless they unlock the phone. This is a consequence of end-to-end encryption (E2EE) and the app not knowing the message is in the queue until the app decrypts it. This approach using E2EE is used to prevent offline attacks, as the key is unavailable to decrypt the notification messages. In this paper, we introduce a novel design and implementation of a message notification protocol for IMAs based on the Signal protocol. The proposed protocol aims to securely display notifications on a locked device and ensures that cryptographic keys are stored in a location that is isolated from the user’s device to prevent offline attacks. This approach enhances the security of private key storage, safeguarding private keys against various external threats. The innovative design strengthens the off-site key management system, rendering it resilient against offline attacks and mitigating the risk of key compromise. Additionally, the proposed protocol is highly efficient, requiring no specialized hardware for implementation. It offers confidentiality of cryptographic keys and protection against offline attacks, further enhancing the overall security of the system. We evaluate the protocol’s effectiveness by analyzing multiple independent implementations that pass a suite of formal tests via ProVerif.

Funder

Center of Excellence in Information Assurance at King Saud University

Publisher

MDPI AG

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3