Affiliation:
1. Tel-Aviv University, Tel-Aviv, Israel
Abstract
We introduce the use of Fourier analysis on lattices as an integral part of a lattice-based construction. The tools we develop provide an elegant description of certain Gaussian distributions around lattice points. Our results include two cryptographic constructions that are based on the worst-case hardness of the unique shortest vector problem. The main result is a new public key cryptosystem whose security guarantee is considerably stronger than previous results (
O
(
n
1.5
) instead of
O
(
n
7
)). This provides the first alternative to Ajtai and Dwork's original 1996 cryptosystem. Our second result is a family of collision resistant hash functions with an improved security guarantee in terms of the unique shortest vector problem. Surprisingly, both results are derived from one theorem that presents two indistinguishable distributions on the segment [0, 1). It seems that this theorem can have further applications; as an example, we use it to solve an open problem in quantum computation related to the dihedral hidden subgroup problem.
Publisher
Association for Computing Machinery (ACM)
Subject
Artificial Intelligence,Hardware and Architecture,Information Systems,Control and Systems Engineering,Software
Cited by
138 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献