New lattice-based cryptographic constructions

Author:

Regev Oded1

Affiliation:

1. Tel-Aviv University, Tel-Aviv, Israel

Abstract

We introduce the use of Fourier analysis on lattices as an integral part of a lattice-based construction. The tools we develop provide an elegant description of certain Gaussian distributions around lattice points. Our results include two cryptographic constructions that are based on the worst-case hardness of the unique shortest vector problem. The main result is a new public key cryptosystem whose security guarantee is considerably stronger than previous results ( O ( n 1.5 ) instead of O ( n 7 )). This provides the first alternative to Ajtai and Dwork's original 1996 cryptosystem. Our second result is a family of collision resistant hash functions with an improved security guarantee in terms of the unique shortest vector problem. Surprisingly, both results are derived from one theorem that presents two indistinguishable distributions on the segment [0, 1). It seems that this theorem can have further applications; as an example, we use it to solve an open problem in quantum computation related to the dihedral hidden subgroup problem.

Publisher

Association for Computing Machinery (ACM)

Subject

Artificial Intelligence,Hardware and Architecture,Information Systems,Control and Systems Engineering,Software

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3