Advances in 2D Material Transfer Systems for van der Waals Heterostructure Assembly

Author:

Somphonsane Ratchanok12,Buapan Kanokwan1,Ramamoorthy Harihara3ORCID

Affiliation:

1. Department of Physics, School of Science, King Mongkut’s Institute of Technology Ladkrabang, Bangkok 10520, Thailand

2. Thailand Center of Excellence in Physics, Commission on Higher Education, 328 Si Ayutthaya Road, Bangkok 10400, Thailand

3. Department of Electronics Engineering, School of Engineering, King Mongkut’s Institute of Technology Ladkrabang, Bangkok 10520, Thailand

Abstract

The assembly of van der Waals (vdW) heterostructures using 2D material transfer systems has revolutionized the field of materials science, enabling the development of novel electronic and optoelectronic devices and the probing of emergent phenomena. The innovative vertical stacking methods enabled by these 2D material transfer systems are central to constructing complex devices, which are often challenging to achieve with traditional bottom-up nanofabrication techniques. Over the past decade, vdW heterostructures have unlocked numerous applications leading to the development of advanced devices, such as transistors, photodetectors, solar cells, and sensors. However, achieving consistent performance remains challenging due to variations in transfer processes, contamination, and the handling of air-sensitive materials, among other factors. Several of these challenges can be addressed through careful design considerations of transfer systems and through innovative modifications. This mini-review critically examines the current state of transfer systems, focusing on their design, cost-effectiveness, and operational efficiency. Special emphasis is placed on low-cost systems and glovebox integration essential for handling air-sensitive materials. We highlight recent advancements in transfer systems, including the integration of cleanroom environments within gloveboxes and the advent of robotic automation. Finally, we discuss ongoing challenges and the necessity for further innovations to achieve reliable, cleaner, and scalable vdW technologies for future applications.

Funder

National Research Council of Thailand

King Mongkut’s Institute of Technology Ladkrabang

Program Management Unit for Human Resources and Institutional Development, Research and Innovation

Publisher

MDPI AG

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3