Effects of Fly Ash and Graphene Oxide in Cement Mortar Considering the Local Recycled Material Context

Author:

Nguyen Nga T. T.1,Ngo Thuc V.2ORCID,Nguyen Khai K.3,Vu Vuong Q.4,Xia Ye56ORCID,Tran Minh Q.7,Dang Huyen T.7,Matos José7ORCID,Dang Son N.7ORCID

Affiliation:

1. Faculty of Technical Fundamental, University of Transport Technology, Hanoi 11407, Vietnam

2. Urban Infrastructure Faculty, Mien Tay Construction University, Vinh Long 85100, Vietnam

3. Civil Engineering Faculty, Mien Tay Construction University, Vinh Long 85100, Vietnam

4. Faculty of Civil Engineering, Thuy Loi University, Hanoi 115000, Vietnam

5. Department of Bridge Engineering, Tongji University, Shanghai 200092, China

6. Shanghai QiZhi Institute, Shanghai 200232, China

7. Department of Civil Engineering, ISISE, ARISE, University of Minho, 4800-058 Guimarães, Portugal

Abstract

Construction materials are at the forefront of global economic development as they provide the foundation for the infrastructure of other industries, with cementitious materials being predominantly used in construction projects. To promote sustainable development, alternative materials are added to cement mortar to increase durability and reduce emissions. In this regard, graphene oxide (GO) and fly ash (FA) are two alternative materials commonly used in cement mortar, which are readily available or are just the waste from other local material production. With different ratios, the amount of GO and FA can affect the properties of cement mortar positively or negatively. This study aims to determine the effects of GO and FA on cement mortar mixtures under material conditions. Research results show that 10 wt% FA and 0.036 wt% GO will give cement mortar the best physical and mechanical properties while ensuring other necessary properties, such as workability. When increasing FA to 30 wt% or GO to 0.05 wt%, the strength of the mortar mixture tends to decrease. Another issue is that the specific surface area of graphene is very high, which poses a significant challenge when uniform dispersion in the cement paste mixture is required. Polycarboxylate combined with a specific mixing sequence has demonstrated good dispersibility and high stability. Through this research, it is demonstrated that the addition of GO and FA has the potential for sustainable development of the construction industry by considering the contexts of the local recycled cementitious replacement materials.

Funder

University of Transport Technology

Publisher

MDPI AG

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3