An Assessment of the Impact of Locally Recycled Cementitious Replacement Materials on the Strength of the Ultra-High-Performance Concrete

Author:

Ngo Thuc V.1ORCID,Tran Viet Ba2,Le Bao Hoai1,Dang Huyen T.3,Matos José3ORCID,Tran Minh Q.3,Dang Son N.3ORCID

Affiliation:

1. Urban Infrastructure Faculty, Mien Tay Construction University, Vinh Long 85100, Vietnam

2. Vietnam Concrete Association, Ha Noi 11100, Vietnam

3. Department of Civil Engineering, ISISE, ARISE, University of Minho, 4800-058 Guimarães, Portugal

Abstract

Withstanding extreme events is increasingly a significant challenge for the construction industry. Where civil infrastructures remain using traditional concrete, which has low tensile strength, poor durability, and weak crack resistance, in this regard, ultra-high-performance concrete (UHPC), with its outstanding mechanical properties and high strength, offers the prospect of wide application. This advanced technology allows for the fabrication of thin and light-dimensional structures to accelerate construction while increasing corrosion resistance to minimize maintenance intervention and extend the service life of the infrastructures. Despite this, UHPC is less eco-friendly due to consuming more cement than the usual material, which requires replacement materials, such as silica fume (SF) and rice husk ash (RHA), which are readily available from other local material production. This study proposes an experimental approach to assess the influence of SF and RHA content on the properties of UHPC. Different SF and RHA compositions will be adjusted to analyze their effects on slump flow, compressive strength, flexural strength, tensile strength, and the stress–strain relationship in UHPC tension testing. Based on the results, the most effective ratio is RHA replacing 50% of the SF in the UHPC mixture. Specialized tensile experiments reveal enhanced tensile strength with judicious RHA incorporation at 5-day and 28-day stages, particularly in initial crack and damage conditions. Stress–strain curves for 5% to 15% RHA samples show increased ductility, indicating that optimal RHA-SF ratios enhance UHPC cracking characteristics. Based on the results, a discussion on the appropriate proportions for utilizing most local materials will be derived, especially for regions of Vietnam. It is evaluated as a feasible and promising solution to reduce greenhouse gas emissions threatening global climate change.

Publisher

MDPI AG

Reference50 articles.

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3