Water Efficiency of Coriander under Flows of Application of Nutritive Solutions Prepared in Brackish Waters

Author:

Bezerra Raphaela Revorêdo,Santos Júnior José Amilton,Pessoa Uriel Calisto,Silva Ênio Farias de França eORCID,Oliveira Tarcísio Ferreira deORCID,Nogueira Kézia Ferreira,Souza Edivan Rodrigues deORCID

Abstract

The impact of the salinity of the nutrient solution on water efficiency can be changed by the application flow. The aim of this work was to analyze the water efficiency and production components of coriander plants, cultivar Verdão, exposed to nutrient solutions (1.7, 3.0, 4.5, and 6.0 dS m−1) applied with different flow rates (1.0, 2.0, 3,0, and 4.0 L min−1) in an NFT hydroponic system. Two experiments were carried out in a greenhouse with two sources of salts to prepare the electrical conductivity. In the first experiment, NaCl was used, and CaCl2·2H2O was used in the second. Variables were analyzed related to the production components and the consumption of water use efficiency. It was found that the water efficiency and production components of coriander plants were more affected by increases in electrical conductivity in the nutrient solution. CaCl2·2H2O better promotes the lower production of dry mass, plant height, water consumption, and the instantaneous and intrinsic efficiency of water use than NaCl. The coriander’s water relations were inhibited by increases in the concentration of salts in nutrient solution, while increases in the flow rate of the nutrient solution negatively affected the productive parameters of the coriander plants.

Funder

Conselho Nacional de Desenvolvimento Científico e Tecnológico

Coordenação de Aperfeiçoamento de Pessoal de Nível Superior

Publisher

MDPI AG

Subject

Water Science and Technology,Aquatic Science,Geography, Planning and Development,Biochemistry

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3