Abstract
We present a biologically inspired sound localisation system for reverberant environments using the Cascade of Asymmetric Resonators with Fast-Acting Compression (CAR-FAC) cochlear model. The system exploits a CAR-FAC pair to pre-process binaural signals that travel through the inherent delay line of the cascade structures, as each filter acts as a delay unit. Following the filtering, each cochlear channel is cross-correlated with all the channels of the other cochlea using a quantised instantaneous correlation function to form a 2-D instantaneous correlation matrix (correlogram). The correlogram contains both interaural time difference and spectral information. The generated correlograms are analysed using a regression neural network for localisation. We investigate the effect of the CAR-FAC nonlinearity on the system performance by comparing it with a CAR only version. To verify that the CAR/CAR-FAC and the quantised instantaneous correlation provide a suitable basis with which to perform sound localisation tasks, a linear regression, an extreme learning machine, and a convolutional neural network are trained to learn the azimuthal angle of the sound source from the correlogram. The system is evaluated using speech data recorded in a reverberant environment. We compare the performance of the linear CAR and nonlinear CAR-FAC models with current sound localisation systems as well as with human performance.
Funder
Australian Research Council Grant
Subject
Fluid Flow and Transfer Processes,Computer Science Applications,Process Chemistry and Technology,General Engineering,Instrumentation,General Materials Science
Cited by
6 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献