Training a Filter-Based Model of the Cochlea in the Context of Pre-Trained Acoustic Models

Author:

Coppieters de Gibson Louise12,Garner Philip N.1

Affiliation:

1. Idiap Research Institute, 1920 Martigny, Switzerland

2. EPFL, Swiss Federal Institute of Technology in Lausanne, 1015 Lausanne, Switzerland

Abstract

Auditory research aims in general to lead to understanding of physiological processes. By contrast, the state of the art in automatic speech processing (notably recognition) is dominated by large pre-trained models that are meant to be used as black-boxes. In this work, we integrate a physiologically plausible (albeit simple filter-based) model of the cochlea into a much larger pre-trained acoustic model for speech recognition. We show that the hybrid system can be trained and evaluated with various combinations of fine-tuning and self-supervision. The results broadly show that the system automatically yields structures that are known to work well. Moreover, these structures lack artifacts that were apparent in (our) previous work using less sophisticated neural models. We conclude that the hybrid structure is an appropriate way to proceed in auditory research, more generally allowing the work to take advantage of larger models and databases from which it would not otherwise benefit.

Funder

Swiss National Science Foundation

Publisher

MDPI AG

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3