Improvement in the Convolutional Neural Network for Computed Tomography Images

Author:

Manabe Keisuke,Asami Yusuke,Yamada Tomonari,Sugimori HiroyukiORCID

Abstract

Background and purpose. This study evaluated a modified specialized convolutional neural network (CNN) to improve the accuracy of medical images. Materials and Methods. We defined computed tomography (CT) images as belonging to one of the following 10 classes: head, neck, chest, abdomen, and pelvis with and without contrast media, with 10,000 images per class. We modified the CNN based on the AlexNet with an input size of 512 × 512. We resized the filter sizes of the convolution layer and max pooling. Using these modified CNNs, various models were created and evaluated. The improved CNN was evaluated to classify the presence or absence of the pancreas in the CT images. We compared the overall accuracy, which was calculated from images not used for training, to that of the ResNet. Results. The overall accuracies of the most improved CNN and ResNet in the 10 classes were 94.8% and 89.3%, respectively. The filter sizes of the improved CNN for the convolution layer were (13, 13), (7, 7), (5, 5), (5, 5), and (5, 5) in order from the first layer, and that of max-pooling was (7, 7). The calculation times of the most improved CNN and ResNet were 56 and 120 min, respectively. Regarding the classification of the pancreas, the overall accuracies of the most improved CNN and ResNet were 75.75% and 58.25%, respectively. The calculation times of the most improved CNN and ResNet were 36 and 55 min, respectively. Conclusion. By optimizing the filter size of the convolution layer and max-pooling of 512 × 512 images, we quickly obtained a highly accurate medical image classification model. This improved CNN can be useful for classifying lesions and anatomies for related diagnostic aid applications.

Publisher

MDPI AG

Subject

Fluid Flow and Transfer Processes,Computer Science Applications,Process Chemistry and Technology,General Engineering,Instrumentation,General Materials Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3