Development of Chest X-ray Image Evaluation Software Using the Deep Learning Techniques

Author:

Usui Kousuke1,Yoshimura Takaaki2345ORCID,Ichikawa Shota67ORCID,Sugimori Hiroyuki458ORCID

Affiliation:

1. Graduate School of Health Sciences, Hokkaido University, Sapporo 0600812, Japan

2. Department of Health Sciences and Technology, Faculty of Health Sciences, Hokkaido University, Sapporo 0600812, Japan

3. Department of Medical Physics, Hokkaido University Hospital, Sapporo 0608648, Japan

4. Global Center for Biomedical Science and Engineering, Faculty of Medicine, Hokkaido University, Sapporo 0608648, Japan

5. Clinical AI Human Resources Development Program, Faculty of Medicine, Hokkaido University, Sapporo 0608648, Japan

6. Department of Radiological Technology, School of Health Sciences, Faculty of Medicine, Niigata University, Niigata 9518518, Japan

7. Institute for Research Administration, Niigata University, Niigata 9502181, Japan

8. Department of Biomedical Science and Engineering, Faculty of Health Sciences, Hokkaido University, Sapporo 0600812, Japan

Abstract

Although the widespread use of digital imaging has enabled real-time image display, images in chest X-ray examinations can be confirmed by the radiologist’s eyes. Considering the development of deep learning (DL) technology, its application will make it possible to immediately determine the need for a retake, which is expected to further improve examination throughput. In this study, we developed software for evaluating chest X-ray images to determine whether a repeat radiographic examination is necessary, based on the combined application of DL technologies, and evaluated its accuracy. The target population was 4809 chest images from a public database. Three classification models (CLMs) for lung field defects, obstacle shadows, and the location of obstacle shadows and a semantic segmentation model (SSM) for the lung field regions were developed using a fivefold cross validation. The CLM was evaluated using the overall accuracy in the confusion matrix, the SSM was evaluated using the mean intersection over union (mIoU), and the DL technology-combined software was evaluated using the total response time on this software (RT) per image for each model. The results of each CLM with respect to lung field defects, obstacle shadows, and obstacle shadow location were 89.8%, 91.7%, and 91.2%, respectively. The mIoU of the SSM was 0.920, and the software RT was 3.64 × 10−2 s. These results indicate that the software can immediately and accurately determine whether a chest image needs to be re-scanned.

Publisher

MDPI AG

Subject

Fluid Flow and Transfer Processes,Computer Science Applications,Process Chemistry and Technology,General Engineering,Instrumentation,General Materials Science

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3