Using Recognizable Fuzzy Analysis for Non-Destructive Detection of Residual Stress in White Light Elements

Author:

Chang Han-Jui,Mao Zhong-Fa,Su Zhi-Ming,Zhang Guang-Yi

Abstract

The phenomenon of residual stress in optical lens injection molding affects the quality of optical devices, with the refractive errors that are caused by geometric errors being the most serious, followed by the reduced accuracy and function of optical components; it is very important to ensure that the lens geometry remains intact and that the refractive index is reduced. This paper uses a photoelastic stress compensation method for measurement verification along with fuzzy theory to reorganize a set of processes that can be used to evaluate the residual stress of a product, whereby the use of corresponding theoretical formulas can effectively quantify and measure the residual stress of the product. A mold flow simulation is used to analyze the molded optical components and determine the feasibility of evaluating the quality of the lens. Through the measurement of the refractive stress value of the optical components, the molding quality of the lens can be improved, and its force distribution effects can be investigated. Geometric analysis and shear stress affect the performance of optical components, and these errors may also cause irreparable problems during secondary processing. Therefore, it is crucial to reduce the residual stress of optical components. When the stress distribution is uniform and the internal melting pressure is reasonably configured, the product’s shrinkage rate can be controlled; the method for determining the residual stress is the core theme of this research.

Funder

The 2019 Guangdong Province Science and Technology Special Fund Project - Major Science and Technology Special Project

Publisher

MDPI AG

Subject

Fluid Flow and Transfer Processes,Computer Science Applications,Process Chemistry and Technology,General Engineering,Instrumentation,General Materials Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3