Optical Penetration and “Fingerprinting” Analysis of Automotive Optical Liquid Silicone Components Based on Wavelet Analysis and Multiple Recognizable Performance Evaluation

Author:

Chang HanjuiORCID,Lu ShuzhouORCID,Sun Yue,Zhang Guangyi,Rao Longshi

Abstract

The residual stress phenomenon in the injection process of an optical lens affects the quality of optical components, and the refractive error caused by geometric errors is the most serious, followed by the degradation of the accuracy and function of optical components. It is very important to ensure that the lens geometry remains intact and the refractive index is low. Therefore, a parameter design method for an optical liquid silicon injection molding was proposed in this study. Wavelet analysis was applied to the noise reduction and feature extraction of the cavity pressure/pressure retaining curve of the injection molding machine, and multiple identifiable performance evaluation methods were used to identify and optimize the parameters of the molding process. Taking an automotive LED lens as an example, Moldex3D simulation software was used to simulate the molding of an LED lens made of LSR material, and two key injection molding factors, melt temperature and V/P switching point, were analyzed and optimized. In this paper, the transmittance and volume shrinkage of LED lenses are taken as quality indexes, and parameters are optimized by setting different V/P switching points and melt temperature schemes. The experimental results show that the residual stress is negatively correlated with transmittance, and the higher the residual stress, the lower the transmittance. Under the optimum process parameters generated by this method, the residual stress of plastic parts is significantly optimized, and the optimization rate is above 15%. In addition, when the V/P switching point is 98 and the melt temperature is 30 °C, the product quality is the best, the volume shrinkage rate is the smallest, and the size is 2.895%, which also means that the carbon emissions are the lowest.

Funder

STU Scientific Research Foundation for Talents

National Natural Science Foundation of China

Natural Science Foundation of Guangdong Province

Ordinary Colleges and Universities in Guangdong Province

Open Fund of Hubei Key Laboratory of Mechanical Transmission and Manufacturing Engineering at Wuhan University of Science and Technology

Publisher

MDPI AG

Subject

Polymers and Plastics,General Chemistry

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3