Facile Hydrothermal and Solvothermal Synthesis and Characterization of Nitrogen-Doped Carbon Dots from Palm Kernel Shell Precursor

Author:

Newman Monday YakubuORCID,Abdullah JaafarORCID,Yusof Nor Azah,Abdul Rashid SurayaORCID,Shueb Rafidah HanimORCID

Abstract

Carbon dots (CDs), a nanomaterial synthesized from organic precursors rich in carbon content with excellent fluorescent property, are in high demand for many purposes, including sensing and biosensing applications. This research focused on preparing CDs from natural and abundant waste, palm kernel shells (PKS) obtained from palm oil biomass, aiming for sensing and biosensing applications. Ethylenediamine and L-phenylalanine doped CDs were produced via the hydrothermal and solvothermal methods using one-pot synthesis techniques in an autoclave batch reactor. The as-prepared N-CDs shows excellent photoluminescence (PL) property and a quantum yield (QY) of 13.7% for ethylenediamine (EDA) doped N-CDs (CDs-EDA) and 8.6% for L-phenylalanine (L-Ph) doped N-CDs (CDs-LPh) with an excitation/emission wavelength of 360 nm/450 nm. The transmission electron microscopy (TEM) images show the N-CDs have an average particle size of 2 nm for both CDs. UV-Visible spectrophotometric results showed C=C and C=O transition. FTIR results show and confirm the presence of functional groups, such as -OH, -C=O, -NH2 on the N-CDs, and the X-ray diffraction pattern showed that the N-CDs were crystalline, depicted with sharp peaks. This research work demonstrated that palm kernel shell biomass often thrown away as waste can produce CDs with excellent physicochemical properties.

Funder

University Putra Malaysia under Putra Grant

Publisher

MDPI AG

Subject

Fluid Flow and Transfer Processes,Computer Science Applications,Process Chemistry and Technology,General Engineering,Instrumentation,General Materials Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3