A Strategy for Achieving Smooth Filamentation Cutting of Transparent Materials with Ultrafast Lasers

Author:

Tokarev Vladimir N.,Melnikov Igor V.

Abstract

A strategy is proposed for achieving a practically important mode of laser processing—a so-called “smooth” laser filamentation cutting (LFC) of transparent materials by a moving beam of a pulse-periodic pico- or subpicosecond laser. With such cutting, the surface of the sidewalls of the cuts have a significantly improved smoothness, and, as a result, the laser-cut plates have increased resistance to damage and cracking due to mechanical impacts during their subsequent use. According to the proposed analytical model, for the case when each filament is formed only by a single laser pulse, the strategy of such cutting is defined by a set of necessary conditions, whose implementation requires, in turn, a certain selection and matching with each other of irradiation parameters (pulse duration and energy, repetition rate, pitch of filaments following) and of material parameters—thermal, optical and mechanical strength constants. The model shows good agreement with experiments on sapphire and tempered glass. Besides, LFC modes are also predicted that provide very high cutting speeds of the order of 1–25 m/s or more, or allow cutting with an extremely low average laser power, but still at a speed acceptable for practical applications.

Publisher

MDPI AG

Subject

Fluid Flow and Transfer Processes,Computer Science Applications,Process Chemistry and Technology,General Engineering,Instrumentation,General Materials Science

Reference60 articles.

1. Laser glass cutting techniques—A review

2. Controlled separation of brittle materials using a laser;Lumley;Am. Ceram. Soc. Bull.,1969

3. Comparison of different processes for separation of glass and crystals using ultrashort pulsed lasers

4. Industrial femtosecond lasers for micro-machining applications with highest quality and efficiency;Matylitsky,2016

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3