Dark Spot Detection from SAR Images Based on Superpixel Deeper Graph Convolutional Network

Author:

Liu XiaojianORCID,Li YanshengORCID,Liu XinyiORCID,Zou HuiminORCID

Abstract

Synthetic Aperture Radar (SAR) is the primary equipment used to detect oil slicks on the ocean’s surface. On SAR images, oil spill regions, as well as other places impacted by atmospheric and oceanic phenomena such as rain cells, upwellings, and internal waves, appear as dark spots. Dark spot detection is typically the initial stage in the identification of oil spills. Because the identified dark spots are oil slick candidates, the quality of dark spot segmentation will eventually impact the accuracy of oil slick identification. Although certain sophisticated deep learning approaches employing pixels as primary processing units work well in remote sensing image semantic segmentation, finding some dark patches with weak boundaries and small regions from noisy SAR images remains a significant difficulty. In light of the foregoing, this paper proposes a dark spot detection method based on superpixels and deeper graph convolutional networks (SGDCNs), with superpixels serving as processing units. The contours of dark spots can be better detected after superpixel segmentation, and the noise in the SAR image can also be smoothed. Furthermore, features derived from superpixel regions are more robust than those derived from fixed pixel neighborhoods. Using the support vector machine recursive feature elimination (SVM-RFE) feature selection algorithm, we obtain an excellent subset of superpixel features for segmentation to reduce the learning task difficulty. After that, the SAR images are transformed into graphs with superpixels as nodes, which are fed into the deeper graph convolutional neural network for node classification. SGDCN leverages a differentiable aggregation function to aggregate the node and neighbor features to form more advanced features. To validate our method, we manually annotated six typical large-scale SAR images covering the Baltic Sea and constructed a dark spot detection dataset. The experimental results demonstrate that our proposed SGDCN is robust and effective compared with several competitive baselines. This dataset has been made publicly available along with this paper.

Funder

National Natural Science Foundation of China

Fundamental Research Funds for the Central Universities

Zhizhuo Research Fund on Spatial-Temporal Artificial Intelligence

Special Fund of Hubei Luojia Laboratory

Publisher

MDPI AG

Subject

General Earth and Planetary Sciences

Cited by 4 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3