An Analysis of the Optimal Features for Sentinel-1 Oil Spill Datasets Based on an Improved J–M/K-Means Algorithm

Author:

Cheng Lingxiao,Li Ying,Zhang Xiaohui,Xie MingORCID

Abstract

With the rapid development of world shipping, oil spill accidents such as tanker collisions, illegal sewage discharges, and oil pipeline ruptures occur frequently. As the SAR system expands from single polarization to multipolarization, the Polarmetric Synthetic Aperture Radar (Pol-SAR) system has been widely used in marine oil spill detection. However, in the studies of the oil spill extraction in SAR images, there are some problems that limit large-scale oil spill detection work. As a transition from single-polarized to full-polarized, the dual-polarized system carries some polarization information and can be obtained in large quantities for free, which has become a major breakthrough in solving the problem of large-scale oil spill detection. In order to optimize the multisource features that can be extracted from dual-polarized SAR images, greatly improve the utilization rate of dual-polarized SAR oil spill images under the premise of reducing workload, and ensure the accuracy of marine oil spill extraction, this paper adopts the metric of inter-class separability, the Jeffries–Matusita distance, which improves on the traditional K-means algorithm by focusing on the noise sensitivity defect of the K-means algorithm; the artificial influence of J–M distance in measuring the separability between classes improves the algorithm in three aspects: sample selection, distance calculation, and data evaluation. Finally, using the inter-sample J–M distance of multisource features, the overall accuracy of image segmentation, the F1-score, and the results of correlation analysis between features, three advantageous features and three subdominant features are selected that can be used for marine oil spill detection.

Funder

Liaoning Revitalization Talents Program

China National Key R&D Program

Publisher

MDPI AG

Subject

General Earth and Planetary Sciences

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3