Decomposition Analysis of Carbon Emissions from Energy Consumption in Beijing-Tianjin-Hebei, China: A Weighted-Combination Model Based on Logarithmic Mean Divisia Index and Shapley Value

Author:

Liang Yi,Niu Dongxiao,Zhou Weiwei,Fan Yingying

Abstract

The Beijing-Tianjin-Hebei (B-T-H) region, who captures the national strategic highland in China, has drawn a great deal of attention due to the fog and haze condition and other environmental problems. Further, the high carbon emissions generated by energy consumption has restricted its further coordinated development seriously. In order to accurately analyze the potential influencing factors that contribute to the growth of energy consumption carbon emissions in the B-T-H region, this paper uses the carbon emission coefficient method to measure the carbon emissions of energy consumption in the B-T-H region, using a weighted combination based on Logarithmic Mean Divisia Index (LMDI) and Shapley Value (SV). The effects affecting carbon emissions during 2001–2013 caused from five aspects, including energy consumption structure, energy consumption intensity, industrial structure, economic development and population size, are quantitatively analyzed. The results indicated that: (1) The carbon emissions had shown a sustained growth trend in the B-T-H region on the whole, while the growth rates varied in the three areas. In detail, Hebei Province got the first place in carbon emissions growth, followed by Tianjin and Beijing; (2) economic development was the main driving force for the carbon emissions growth of energy consumption in B-T-H region. Energy consumption structure, population size and industrial structure promoted carbon emissions growth as well, but their effects weakened in turn and were less obvious than that of economic development; (3) energy consumption intensity had played a significant inhibitory role on the carbon emissions growth; (4) it was of great significance to ease the carbon emission-reduction pressure of the B-T-H region from the four aspects of upgrading industrial structure adjustment, making technological progress, optimizing the energy structure and building long-term carbon-emission-reduction mechanisms, so as to promote the coordinated low-carbon development.

Funder

National Natural Science Foundation of China

Publisher

MDPI AG

Subject

Management, Monitoring, Policy and Law,Renewable Energy, Sustainability and the Environment,Geography, Planning and Development

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3