Design of Inner Matching Three-Stage High-Power Doherty Power Amplifier Based on GaN HEMT Model

Author:

Li Renyi1,Ge Chen1,Liang Chenwei1,Zhong Shichang1

Affiliation:

1. Nanjing Electronic Devices Institute, Nanjing 210016, China

Abstract

This paper introduces the structure and characteristics of an internal-matching high-power Doherty power amplifier based on GaN HEMT devices with 0.25 μm process platforms from the Nanjing Electronic Devices Institute. Through parameter extraction and load-pull testing of the model transistor, an EE_HEMT model for the 1.2 mm gate-width GaN HEMT device was established. This model serves as the foundation for designing a high-power three-stage Doherty power amplifier. The amplifier achieved a saturated power gain exceeding 9 dB in continuous wave mode, with a saturated power output of 49.7 dBm. The drain efficiency was greater than 65% at 2.6 GHz. At 9 dB power back-off point, corresponding to an output power of 40.5 dBm, the drain efficiency remained above 55%. The performance of the amplifier remains consistent within the 2.55–2.62 GHz frequency range. The measured power, efficiency, and gain of the designed Doherty power amplifier align closely with the simulation results based on the EE_HEMT model, validating the accuracy of the established model. Furthermore, the in-band matching design reduces the size and weight of the amplifier. The amplifier maintains normal operation even after high and low-temperature testing, demonstrating its reliability. In conjunction with DPD (digital pre-distortion) for the modulated signal test, the amplifier exhibits extremely high linearity (ACLR < −50.93 dBc). This Doherty power amplifier holds potential applications in modern wireless communication scenarios.

Publisher

MDPI AG

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3