A Framework to Simulate Friction Stir Additive Manufacturing (FSAM) Using the Finite Element Method

Author:

Meyghani Bahman12ORCID,Teimouri Reza3ORCID

Affiliation:

1. BKL B.V., Collse Heide 1, 5674 VM Nuenen, The Netherlands

2. Department of Mechanical Engineering, Faculty of Engineering Technology and Built Environment, UCSI University, Taman Connaught, Kuala Lumpur 56000, Malaysia

3. Chair of Production Engineering, Faculty of Mechanical Engineering, Cracow University of Technology, John Pawła II, 31-864 Cracow, Poland

Abstract

Defining an accurate friction model without having the mesh distortion in an optimized computational time has always been a significant challenge for modelling solid-state natural processes. The presented paper proposes an Eulerian frictional-based solid static model for the accurate modeling of sliding and sticking conditions for the friction stir additive manufacturing process (FSAM). For the frictional behavior, a modified friction model is proposed to investigate the sliding and sticking conditions during the process. The magnesium alloy is selected as the workpiece material and AZ31B-F is employed as the filler material. Two different subroutines, Dflux and Sfilm, are used in order to simulate the heat flux during the process. The convection and emission during the process are determined using the Goldak double ellipsoidal model. DC3D8 and C3D8R elements are employed as the thermal and mechanical models, respectively. The results indicated that the temperature sharply increased up to 870 °C in the first and the second layers. After that, the increasing rate becomes slower with a maxim temperature of 1310 °C. A linear cooling behavior is obtained at the cooling step. The stress results indicated that the tool and the filler material pressure play a significant role in increasing the stress at the center of the workpiece. On the sides of the workpiece, a peak stress is also obtained due to the clamping force. At the cooling phase for the center of the workpiece, the longitudinal residual stress of 5 MP and transverse residual stress of 7 MPa (compression) are achieved. The distortion of the workpiece is also investigated and a maximum value of 0.13 mm is obtained. To wrap up, it should be noted that by implementing an accurate sliding/sticking condition in a frictional based model, a more comprehensive investigation about frictional interactions and their influence on thermal and mechanical behavior can be carried out.

Publisher

MDPI AG

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3