Machining performance evaluation under recently developed sustainable HAJM process of zirconia ceramic using hot SiC abrasives: An experimental and simulation approach

Author:

Pradhan Subhadip1,Das Sudhansu Ranjan1ORCID,Jena Pankaj Charan1,Dhupal Debabrata1

Affiliation:

1. Department of Production Engineering, Veer Surendra Sai University of Technology, Sambalpur, India

Abstract

The proposed research work accomplishes the experimental study and computational fluid dynamics (CFD) technique for erosive footprint prediction extent in hot abrasive jet machining (HAJMing) constraints on target surface erosion rate, surface roughness of intricately shaped tapered holes generation. The CFD-obtained footprints were in superior agreement with experimentally measured data. HAJMing process uses a relatively high speed air-hot abrasive stream to produce both high accuracy micro-channels and tapered holes. HAJM also defines itself phenomenal competence over all advanced manufacturing techniques due to its growing demands for better surface reliability with defects (mostly stress, heat) free surfaces. Zirconia is widely accepted and associated in the non-conventional machining processes and industries with the years of track on record of proven performance in a vast number of brittle materials. Most perceptible act in this research is the selection of abrasive particle to achieve the appropriate intricate shaped holes on zirconia ceramic with hot silicon carbide (SiC) abrasives. Machining of these features are done with varying the abrasive temperature. Optical microscopic view was considered for the generation of machined holes during HAJMing. All the experimental data were presented to study the effect of machining constraints on target surface erosion rate and surface roughness using HAJMing. Single impact experiments were executed to measure the target surface erosion due to impact of individual hot silicon carbide abrasive particles. An experimental setup has been designed to conduct the machining trials using Box-Behnken design of experiments. It is also shown that the generated workpiece surface contour and erosion rate are the function of machining constraints which have a negligible influence on air-abrasive flow characteristics. This research work also deals with the sustainability assessment under environmental-friendly hot abrasive-assisted machining conditions.

Funder

All India Council for Technical Education

Publisher

SAGE Publications

Subject

Mechanical Engineering

Cited by 21 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3