Video Smoke Detection Method Based on Change-Cumulative Image and Fusion Deep Network

Author:

Liu ,Cheng ,Du ,Luo ,Zhang ,Cheng ,Wang

Abstract

Smoke detection technology based on computer vision is a popular research direction in fire detection. This technology is widely used in outdoor fire detection fields (e.g., forest fire detection). Smoke detection is often based on features such as color, shape, texture, and motion to distinguish between smoke and non-smoke objects. However, the salience and robustness of these features are insufficiently strong, resulting in low smoke detection performance under complex environment. Deep learning technology has improved smoke detection performance to a certain degree, but extracting smoke detail features is difficult when the number of network layers is small. With no effective use of smoke motion characteristics, indicators such as false alarm rate are high in video smoke detection. To enhance the detection performance of smoke objects in videos, this paper proposes a concept of change-cumulative image by converting the YUV color space of multi-frame video images into a change-cumulative image, which can represent the motion and color-change characteristics of smoke. Then, a fusion deep network is designed, which increases the depth of the VGG16 network by arranging two convolutional layers after each of its convolutional layer. The VGG16 and Resnet50 (Deep residual network) network models are also arranged using the fusion deep network to improve feature expression ability while increasing the depth of the whole network. Doing so can help extract additional discriminating characteristics of smoke. Experimental results show that by using the change-cumulative image as the input image of the deep network model, smoke detection performance is superior to the classic RGB input image; the smoke detection performance of the fusion deep network model is better than that of the single VGG16 and Resnet50 network models; the smoke detection accuracy, false positive rate, and false alarm rate of this method are better than those of the current popular methods of video smoke detection.

Funder

National Natural Science Foundation of China

Publisher

MDPI AG

Subject

Electrical and Electronic Engineering,Biochemistry,Instrumentation,Atomic and Molecular Physics, and Optics,Analytical Chemistry

Reference20 articles.

1. Video smoke detection: A literature survey;Shi;J. Image Graph.,2018

2. Histogram-based smoke segmentation in forest fire detection system;Krstinić;Inf. Technol. Control.,2009

3. Smoke detection in video using wavelets and support vector machines

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3