A Small-Target Forest Fire Smoke Detection Model Based on Deformable Transformer for End-to-End Object Detection

Author:

Huang JingwenORCID,Zhou Jiashun,Yang Huizhou,Liu YunfeiORCID,Liu Han

Abstract

Forest fires have continually endangered personal safety and social property. To reduce the occurrences of forest fires, it is essential to detect forest fire smoke accurately and quickly. Traditional forest fire smoke detection based on convolutional neural networks (CNNs) needs many hand-designed components and shows poor ability to detect small and inconspicuous smoke in complex forest scenes. Therefore, we propose an improved early forest fire smoke detection model based on deformable transformer for end-to-end object detection (deformable DETR). We use deformable DETR as a baseline containing the best sparse spatial sampling for smoke with deformable convolution and relation modeling capability of the transformer. We integrate a Multi-scale Context Contrasted Local Feature module (MCCL) and a Dense Pyramid Pooling module (DPPM) into the feature extraction module for perceiving features of small or inconspicuous smoke. To improve detection accuracy and reduce false and missed detections, we propose an iterative bounding box combination method to generate precise bounding boxes which can cover the entire smoke object. In addition, we evaluate the proposed approach using a quantitative and qualitative self-made forest fire smoke dataset, which includes forest fire smoke images of different scales. Extensive experiments show that our improved model’s forest fire smoke detection accuracy is significantly higher than that of the mainstream models. Compared with deformable DETR, our model shows better performance with improvement of mAP (mean average precision) by 4.2%, APS (AP for small objects) by 5.1%, and other metrics by 2% to 3%. Our model is adequate for early forest fire smoke detection with high detection accuracy of different-scale smoke objects.

Funder

Postgraduate Research & Practice Innovation Program of Jiangsu Province

National Key R&D Program of China

Publisher

MDPI AG

Subject

Forestry

Cited by 24 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3