Zero Stress Aging of Glass and Carbon Fibers in Water and Oil—Strength Reduction Explained by Dissolution Kinetics

Author:

Echtermeyer Andreas T.,Krauklis Andrey E.ORCID,Gagani Abedin I.,Sæter Erik

Abstract

Understanding the strength degradation of glass and carbon fibers due to exposure to liquids over time is important for structural applications. A model has been developed for glass fibers that links the strength reduction in water to the increase of the Griffith flaw size of the fibers. The speed of the increase is determined by regular chemical dissolution kinetics of glass in water. Crack growth and strength reduction can be predicted for several water temperatures and pH, based on the corresponding dissolution constants. Agreement with experimental results for the case of water at 60 °C with a pH of 5.8 is reasonably good. Carbon fibers in water and toluene and glass fibers in toluene do not chemically react with the liquid. Subsequently no strength degradation is expected and will be confirmed experimentally. All fiber strength measurements are carried out on bundles. The glass fibers are R-glass.

Publisher

MDPI AG

Subject

Mechanics of Materials,Biomaterials,Civil and Structural Engineering,Ceramics and Composites

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3