Author:
Padilla Washington,García Jesús,Molina José
Abstract
In this paper, a monitoring system of agricultural production is modeled as a Data Fusion System (data from local fairs and meteorological data). The proposal considers the particular information of sales in agricultural markets for knowledge extraction about the associations among them. This association knowledge is employed to improve predictions of sales using a spatial prediction technique, as shown with data collected from local markets of the Andean region of Ecuador. The commercial activity in these markets uses Alternative Marketing Circuits (CIALCO). This market platform establishes a direct relationship between producer and consumer prices and promotes direct commercial interaction among family groups. The problem is presented first as a general fusion problem with a network of spatially distributed heterogeneous data sources, and is then applied to the prediction of products sales based on association rules mined in available sales data. First, transactional data is used as the base to extract the best association rules between products sold in different local markets, knowledge that allows the system to gain a significant improvement in prediction accuracy in the spatial region considered.
Funder
Ministerio de Economía, Industria y Competitividad, Gobierno de España
Subject
Electrical and Electronic Engineering,Biochemistry,Instrumentation,Atomic and Molecular Physics, and Optics,Analytical Chemistry
Reference38 articles.
1. CIALCO: Alternative marketing channels;Padilla;Commun. Comput. Inf. Sci.,2016
2. Improving Forecasting Using Information Fusion in Local Agricultural Markets;Padilla,2018
3. Information Fusion and Machine Learning in Spatial Prediction for Local Agricultural Markets;Padilla,2018
4. Application of Computational Intelligence to Improve Education in Smart Cities
Cited by
11 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献