A new framework for building agricultural domain-based ontologies from text documents using natural language processing and artificial intelligence techniques

Author:

Saravanan Krithikha Sanju1,Bhagavathiappan Velammal1

Affiliation:

1. Department of Computer Science and Engineering, College of Engineering, Guindy, Anna University, Chennai, India

Abstract

The advancements in technology, particularly in the field of Natural Language Processing (NLP) and Artificial Intelligence (AI) can be advantageous for the agricultural sector to enhance the yield. Establishing an agricultural ontology as part of the development would spur the expansion of cross-domain agriculture. Semantic and syntactic knowledge of the domain data is required for building such a domain-based ontology. To process the data from text documents, a standard technique with syntactic and semantic features are needed because the availability of pre-determined agricultural domain-based data is insufficient. In this research work, an Agricultural Ontologies Construction framework (AOC) is proposed for creating the agricultural domain ontology from text documents using NLP techniques with Robustly Optimized BERT Approach (RoBERTa) model and Graph Convolutional Network (GCN). The anaphora present in the documents are resolved to produce precise ontology from the input data. In the proposed AOC work, the domain terms are extracted using the RoBERTa model with Regular Expressions (RE) and the relationships between the domain terms are retrieved by utilizing the GCN with RE. When compared to other current systems, the efficacy of the proposed AOC method achieves an exceptional result, with precision and recall of 99.6% and 99.1% respectively.

Publisher

IOS Press

Reference29 articles.

1. Extracting the information backbone in online system;Zhang;PloS One,2013

2. Knowledge extractionand improved data fusion for sales prediction in local agriculturalmarkets;Padilla;Sensors,2019

3. Policies for sustainable agriculture and livelihood in marginal lands: A review;Ahmadzai;Sustainability,2021

4. Logical concept mapping and social media analytics relating to cyber criminal activities for ontology creation;Rawat;International Journal of Information Technology,2023

5. An NLP-guided ontology development and refinement approach to represent and query visual information;Patel;Expert Systems with Applications,2023

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3