Free Vibration Analysis of Functionally Graded Porous Cylindrical Panels Reinforced with Graphene Platelets

Author:

Cho Jin-Rae1ORCID

Affiliation:

1. Department of Naval Architecture and Ocean Engineering, Hongik University, Jochiwon, Sejong 30016, Republic of Korea

Abstract

The free vibration of functionally graded porous cylindrical shell panels reinforced with graphene platelets (GPLs) was numerically investigated. The free vibration problem was formulated using the first-order shear deformation shell theory in the framework of the 2-D natural element method (NEM). The effective material properties of the GPL-reinforced shell panel were evaluated by employing the Halpin–Tsai model and the rule of mixtures and were modified by considering the porosity distribution. The cylindrical shell surface was transformed into the 2-D planar NEM grid to avoid complex computation, and the concept of the MITC3+shell element was employed to suppress shear locking. The numerical method was validated through benchmark experiments, and the free vibration characteristics of FG-GPLRC porous cylindrical shell panels were investigated. The numerical results are presented for four GPL distribution patterns (FG-U, FG-X, FG-O, and FG-Λ) and three porosity distributions (center- and outer-biased and uniform). The effects of GPL weight, porosity amount, length–thickness and length–radius ratios, and the aspect ratio of the shell panel and boundary condition on the free vibration characteristics are discussed in detail. It is found from the numerical results that the proposed numerical method accurately predicts the natural frequencies of FG-GPLRC porous cylindrical shell panels. Moreover, the free vibration of FG-GPLRC porous cylindrical shell panels is significantly influenced by the distribution pattern as well as the amount of GPLs and the porosity.

Funder

National Research Foundation of Korea (NRF) grant funded by the Korea government

2023 Hongik University Research Fund

Publisher

MDPI AG

Subject

General Materials Science,General Chemical Engineering

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3