Affiliation:
1. Department of Civil and Building Engineering, University of Sherbrooke, Quebec, QC J1K 2R1, Canada
Abstract
Modifying the polymer matrix by nanoparticles can be a promising approach to improve the performance of fiber-reinforced polymer (FRP) composites. Organic solvents are usually used for dispersing graphene oxide (GO) well in the polymer matrix. In this study, a green, facile, and efficient approach was developed to prepare epoxy/GO nanocomposites. In situ polymerization is used for synthesizing nanocomposites, eliminating the need for organic solvents and surfactants. By loading just 0.6 wt% of GO into the epoxy resin, Young’s modulus, tensile strength, and toughness improved by 38%, 46%, and 143%, respectively. Fractography analysis indicates smooth fracture surfaces of pure resin that changed to highly toughened fracture surfaces in this nanocomposite. Plastic deformation, crack pinning, and deflection contributed to improving the toughness of the nanocomposites. FTIR investigations show that amide bonding was created by the reaction of the carboxylic acid groups in GO with some amine groups in the curing agent during the dispersion processes.
Funder
Natural Sciences and Engineering Research Council of Canada
Cited by
1 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献