Enhancement of the Josephson Current in a Quantum Dot Connected to Majorana Nanowires

Author:

Chi Feng1,Jia Qiang-Sheng1,Liu Jia2,Gao Qing-Guo1,Yi Zi-Chuan1ORCID,Liu Li-Ming1

Affiliation:

1. School of Electronic and Information Engineering, UEST of China, Zhongshan Institute, Zhongshan 528400, China

2. School of Science, Inner Mongolia University of Science and Technology, Baotou 014010, China

Abstract

We investigate the behavior of the Josephson current in a system composed of a quantum dot (QD) sandwiched between two nanowires by using the nonequilibrium Green’s function technique. We consider that the nanowires are in proximity to s-wave superconducror substrates, and Majorana bound states (MBSs) are induced at their ends. It is also assumed that the two nanowires are not aligned in the same orientation, but form a bent angle with respect to each other. It is found that when only one spin state on the QD is coupled to the left nanowire, the Josephson current is the typical sinusoidal function of the phase difference between the two nanowires. If both spin states hybridize to the MBSs with equal coupling strengths, the Josephson current then is not a sinusoidal function of the phase difference. In particular, when the bent angle between the two nanowires is π/2 and the two modes of the MBSs in each nanowire are decoupled from each other, the Josephson current is enhanced by about twenty times in magnitude as compared to the former case. Moreover, the simultaneously enhanced currents of the two spin directions are of the same magnitude but flow in opposite directions and they induce a large pure spin current. Our results also show that this abnormally enhanced Josephson current will be suppressed by a vertical magnetic field applied to the QD.

Funder

National Natural Science Foundation of China

Guangdong Province Education Department

Guangdong Basic and Applied Basic Research Foundation

Publisher

MDPI AG

Subject

General Materials Science,General Chemical Engineering

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3