Josephson Diode Effect in Parallel-Coupled Double-Quantum Dots Connected to Unalike Majorana Nanowires

Author:

Gao Yu-Mei1,Xiao Hu2,Jiang Mou-Hua3ORCID,Chi Feng1,Yi Zi-Chuan1ORCID,Liu Li-Ming1

Affiliation:

1. School of Electronic and Information Engineering, UEST of China, Zhongshan Institute, Zhongshan 528400, China

2. Zhongshan Zhuoman Microelectronics Co., Ltd., Zhongshan 528400, China

3. South China Academy of Advanced Optoelectronics, South China Normal University, Guangzhou 510006, China

Abstract

We study theoretically the Josephson diode effect (JDE) when realized in a system composed of parallel-coupled double-quantum dots (DQDs) sandwiched between two semiconductor nanowires deposited on an s-wave superconductor surface. Due to the combined effects of proximity-induced superconductivity, strong Rashba spin–orbit interaction, and the Zeeman splitting inside the nanowires, a pair of Majorana bound states (MBSs) may possibly emerge at opposite ends of each nanowire. Different phase factors arising from the superconductor substrate can be generated in the coupling amplitudes between the DQDs and MBSs prepared at the left and right nanowires, and this will result in the Josephson current. We find that the critical Josephson currents in positive and negative directions are different from each other in amplitude within an oscillation period with respect to the magnetic flux penetrating through the system, a phenomenon known as the JDE. It arises from the quantum interference effect in this double-path device, and it can hardly occur in the system of one QD coupled to MBSs. Our results also show that the diode efficiency can reach up to 50%, but this depends on the overlap amplitude between the MBSs, as well as the energy levels of the DQDs adjustable by gate voltages. The present model is realizable within current nanofabrication technologies and may find practical use in the interdisciplinary field of Majorana and Josephson physics.

Funder

Department of Education in Guangdong Province

Guangdong Province of China

Private University Scientific Research Project of Guangdong Private Education Association of China

Guangdong University Teaching Management Institute of China

Zhongshan Institute of University of Electronic Science and Technology of China

Engineering Technology Center of Regular Universities in Guangdong Province

Key Laboratory of Regular Universities in Guangdong Province

Publisher

MDPI AG

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3