Extremely High-Quality Periodic Structures on ITO Film Efficiently Fabricated by Femtosecond Pulse Train Output from a Frequency-Doubled Fabry–Perot Cavity

Author:

Jiang Qilin1,Zhang Yuchan1,Xu Yufeng1,Zhang Shian1,Feng Donghai1,Jia Tianqing12,Sun Zhenrong1,Qiu Jianrong3

Affiliation:

1. State Key Laboratory of Precision Spectroscopy, School of Physics and Electronic Science, East China Normal University, Shanghai 200062, China

2. Collaborative Innovation Center of Extreme Optics, Shanxi University, Taiyuan 030006, China

3. State Key Laboratory of Optical Instrumentation, Zhejiang University, Hangzhou 310027, China

Abstract

This study developed a novel frequency-doubled Fabry–Perot cavity method based on a femtosecond laser of 1030 nm, 190 fs, 1 mJ, and 1 kHz. The time interval (60–1000 ps) and attenuation ratio (0.5–0.9) between adjacent sub-pulses of the 515 nm pulse train were able to be easily adjusted, while the efficiency was up to 50% and remained unchanged. Extremely high-quality low-spatial-frequency LIPSS (LSFL) was efficiently fabricated on an indium tin oxide (ITO) film using a pulse train with a time interval of 150 ps and attenuation ratio of 0.9 focused with a cylindrical lens. Compared with the LSFL induced by the primary Gaussian pulse, the uniformity of the LSFL period was enhanced from 481 ± 41 nm to 435 ± 8 nm, the divergence of structural orientation angle was reduced from 15.6° to 3.7°, and the depth was enhanced from 74.21 ± 14.35 nm to 150.6 ± 8.63 nm. The average line edge roughness and line height roughness were only 7.34 nm and 2.06 nm, respectively. The depths and roughness values were close to or exceeded those of resist lines made by the interference lithography. Compared with the common Fabry–Perot cavity, the laser energy efficiency of the pulse trains and manufacturing efficiency were enhanced by factors of 19 and 25. A very colorful “lotus” pattern with a size of 30×28 mm2 was demonstrated, which was covered with high-quality LSFLs fabricated by a pulse train with optimized laser parameters. Pulse trains can efficiently enhance and prolong the excitation of surface plasmon polaritons, inhibit deposition particles, depress ablation residual heat and thermal shock waves, and eliminate high-spatial-frequency LIPSS formed on LSFL, therefore, producing extremely high-quality LSFL on ITO films.

Funder

National Natural Science Foundation of China

‘Manufacturing beyond limits’ of Shanghai

Publisher

MDPI AG

Subject

General Materials Science,General Chemical Engineering

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3