Temperature-Dependent and Time-Resolved Luminescence Characterization of γ-Ga2O3 Nanoparticles

Author:

García-Carrión Marina1,Ramírez-Castellanos Julio2ORCID,Nogales Emilio1,Méndez Bianchi1ORCID

Affiliation:

1. Department of Materials Physics, Faculty of Physical Sciences, University Complutense of Madrid, E-28040 Madrid, Spain

2. Department of Inorganic Chemistry, Faculty of Chemical Sciences, University Complutense of Madrid, E-28040 Madrid, Spain

Abstract

The temperature-dependent luminescence properties of γ-Ga2O3 nanoparticles prepared by a precipitation method are investigated under steady-state and pulsed-light excitation. The main photoluminescence (PL) emission at room temperature consists of a single blue band centered around 2.76 eV, which hardly undergoes a blueshift of 0.03 eV when temperature goes down to 4 K. The emission behaves with a positive thermal quenching following an Arrhenius-type curve. The data fitting yields two non-radiative levels affecting the emission band with activation energies of 7 meV and 40 meV. On the other hand, time-resolved PL measurements have also been taken and studied as a function of the temperature. The data analysis has resulted in two lifetimes: one of 3.4 ns and the other of 32 ns at room temperature, which undergo an increase up to 4.5 ns and 65 ns at T = 4 K, respectively. Based on both stationary and dynamic PL results, a model of radiative and non-radiative levels associated with the main emission bands of γ-Ga2O3 is suggested. Finally, by using PL excitation measurements, an estimation of the bandgap and its variation with temperature between 4 K and room temperature were obtained and assessed against O’Donnell–Chen’s law. With this variation it has been possible to calculate the average of the phonon energy, resulting in ⟨ħω⟩ = 10 ± 1 meV.

Funder

MICIN

Air Force Office of Scientific Research

Publisher

MDPI AG

Subject

General Materials Science,General Chemical Engineering

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3