Phosphate Removal from Wastewater by Magnetic Amorphous Lanthanum Silicate Alginate Hydrogel Beads

Author:

Chen Hongyun,Zeng HongboORCID,Yang HuamingORCID

Abstract

It is of both fundamental and practical importance to develop effective adsorbents for removing phosphate from aqueous solutions continuously. In this study, magnetic amorphous lanthanum silicate alginate hydrogel beads (MALS-B) were prepared and used for phosphate removal. Mesoporous silica materials with highly ordered and hexagonal channel structures were synthesized from natural mineral rectorite (REC) at room temperature. On this basis, amorphous lanthanum silicate (ALS) was synthesized by theone-pot method using a silicon source from REC and a commercial lanthanum source. Further, MALS-B were synthesized from sodium alginate (SA) with ALS and Fe3O4 as the incorporated adsorbable and magnetic nanoparticles via a simple cross-linking method in CaCl2 solution. The synthesized hydrogel beads were characterized by various techniques. ALS and Fe3O4 existed relatively independently in MALS-B, where ALS provided adsorption sites and Fe3O4 provided magnetism. They played a synergistic role in phosphate removal. The saturation magnetization value of MALS-B was 17.38 emu/g, enabling theirfacile separation from aqueous solutions after phosphate adsorption. MALS-B exhibited a preferable adsorption capacity of 40.14 mg P/g for phosphorus compared to other hydrogel beads based on adsorption experiments. More significantly, MALS-B exhibited excellent selectivity for phosphate in aqueous solutions with various interfering ions and possessed a high affinity to phosphate in a wide pH range. MALS-B showed the treatment volume of 480 BV when effluent phosphate concentration was below 0.5 mg/L in fixed-bed column adsorption. The adsorption mechanism was also revealed. Our work demonstrates that MALS-B can serve as a promising adsorbent for continuous phosphate adsorption.

Funder

the National Science Fund for Distinguished Young Scholars

Publisher

MDPI AG

Subject

Geology,Geotechnical Engineering and Engineering Geology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3