Hydrogel Applications in Nitrogen and Phosphorus Compounds Recovery from Water and Wastewater: An Overview

Author:

Szopa Daniel1,Wróbel Paulina1ORCID,Anwajler Beata2ORCID,Witek-Krowiak Anna1ORCID

Affiliation:

1. Faculty of Chemistry, Wroclaw University of Science and Technology, 27 Wybrzeze Wyspianskiego Street, 50-370 Wroclaw, Poland

2. Faculty of Mechanical and Power Engineering, Wroclaw University of Science and Technology, 27 Wybrzeze Wyspianskiego Street, 50-370 Wroclaw, Poland

Abstract

This article provides an overview of the diverse applications of hydrogels in nutrient recovery from water and wastewater. Due to their unique properties, such as high water-retention capacity, nutrient rerelease, and tunable porosity, hydrogels have emerged as promising materials for efficient nutrient capture and recycling. It has been suggested that hydrogels, depending on their composition, can be reused in agriculture, especially in drought-prone areas. Further research paths have been identified that could expand their application in these regions. However, the main focus of the article is to highlight the current gaps in understanding how hydrogels bind nitrogen and phosphorus compounds. The study underscores the need for research that specifically examines how different components of hydrogel matrices interact with each other and with recovered nutrients. Furthermore, it is essential to assess how various nutrient-recovery parameters, such as temperature, pH, and heavy metal content, interact with each other and with specific matrix compositions. This type of research is crucial for enhancing both the recovery efficiency and selectivity of these hydrogels, which are critical for advancing nutrient-recovery technologies and agricultural applications. A comprehensive research approach involves using structured research methodologies and optimization techniques to streamline studies and identify crucial relationships.

Publisher

MDPI AG

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3