Experimental and Analytical Investigation into the Synergistic Mechanism and Failure Characteristics of the Backfill-Red Sandstone Combination

Author:

Zhang WenORCID,Yan Chengyuan,Zhou Guoyue,Guo Jinping,Chen Yanyu,Zhang Baohua,Wu SaisaiORCID

Abstract

The stability of underground goaf in filling mining is dominated by the interaction mechanism of the backfill-surrounding rock combination. In order to investigate the interaction mechanism and failure characteristics of the backfill-surrounding rock combination, backfill-red sandstone combinations with three different cement–sand ratios were prepared for uniaxial compression tests. The deformation and failure characteristics of the specimens were analyzed. It was found that at the cement–sand ratio of 1:4, the backfill and red sandstone interacted with and restricted each other, and the through cracks appeared in the whole specimens, which indicated that the backfill and red sandstone can jointly resist external loads and play a role in common bearing. However, with the decrease of the cement–sand ratio, the stress mainly acts on the backfill, and the deformation observed in the backfill is large while there is no obvious rupture in the rock. Based on the failure characteristics and the stress–strain curves of the specimens, the damage constitutive relationship that can describe the failure process and deformation characteristics is proposed. Correlated with the experiment results, the damage constitutive equation is established in three stages including compaction pre-synergy stage, quasi-elastic synergy deformation stage and rupture deformation stage. The failure characteristics observed in each stage are analyzed. The research results are of great significance to accurately understanding the interaction between backfill and surrounding rock, which can be used to design and select the mixture ratio of the filling materials.

Funder

National Natural Science Foundation of China

Publisher

MDPI AG

Subject

Geology,Geotechnical Engineering and Engineering Geology

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3