Experimental Development of a Novel Mine Backfill Material: Foam Mine Fill

Author:

Hefni MohammedORCID,Hassani Ferri

Abstract

This study aims to develop a novel mine backfill material called foam mine fill (FMF). A cellular structure is achieved by incorporating a premade foam into the backfill mixture using an air-entraining agent. FMF samples were prepared with copper-nickel mine tailings and normal Portland cement. Experiments were designed to investigate the effect of binder dosage, volume of entrained air, and foam mixing time on FMF unconfined compressive strength (UCS) and dry density. Moreover, a qualitative microscopic assessment investigated the effect of foam mixing time on air bubble structure. The pore size distribution and porosity of selected samples were investigated through mercury intrusion porosimetry. Relative to reference samples without entrained air, the UCS of FMF samples was 20–50% lower. However, the concomitant lower dry density (by up to 360 kg/m3) could enhance the safety of the underground working environment, especially in underhand cut-and-fill mining where miners and machinery work beneath the backfilled stope, and lower-density fill material would minimize the adverse effects of potential backfill failure. Prolonged foam mixing time led to a significant loss in UCS and total collapse of the air bubble structure. Other potential applications for FMF are areas where there are tailings shortages and as an alternative to hydraulic fill.

Publisher

MDPI AG

Subject

Geology,Geotechnical Engineering and Engineering Geology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3